Crystal Transformation of Nylon 11 Using in situ WAXD

Qing Xin ZHANG¹, Yu Xian AN¹, Ying Ning YU¹, Zhi Shen MO¹*, G. R. MITCHELL²

¹Polymer Physics Laboratory, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 ²Department of Physics, University of Reading, Whiteknights, PO Box 220, Reading RG6 6AF, UK

Abstract: α Form Nylon 11 films were found to exist a non-linear transformation at 70°C during the heating process using *in situ* WAXD. The α Form disappeared but δ form appeared when the temperature was higher 70°C.

Keywords: Nylon 11, crystal transition, WAXD.

Nylon 11 is a high-performance semicrystalline polymer which was used widely in many fields. In recent years, the curious ferroelectric and piezoelectric properties of nylon 11 were found^{1,2}. It is well known that piezoelectricity is related to the crystal form of Nylon 11.

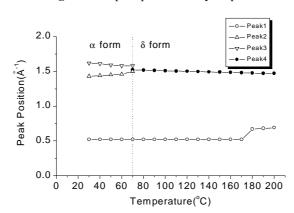
The sample was mounted in a capillary (diameter was 2mm) within a small oven with mica windows. The scattered intensity was recorded from Q = 0.2 to 6.5 Å⁻¹ ($Q = 2\pi \sin\theta/\lambda$) using steps of $\Delta Q=0.05$ Å⁻¹. The values of the peak width and peak position were shown in **Figure 1** and **Figure 2** respectively.

At 30°C, the diffraction patterns of the α form Nylon 11(triclinic system) showed three diffraction peaks, peak 1 (001), peak 2 (100) and peak 3 (010,110). The δ form Nylon 11(pseudohexagonal) would appear when the temperature was above 70°C. The position of peak 1 was stable at Q = 0.52 Å⁻¹ even when the temperature was up to 175°C, but its peak position suddenly rose to 0.7 Å⁻¹. The position of peak 2 increased from 1.43 Å⁻¹ to 1.46 Å⁻¹, but the peak position of peak 3 decreased from 1.62 Å⁻¹ to 1.57Å⁻¹ simultaneously, and they disappeared when the temperature was up to 70°C. Peak 4 appeared when the temperature was above 70°C, which narrowed significantly as the temperature increase. The positions of crystal peaks were all ploted and shown in **Figure 2**.

We observed that there was a non-linear transformation at 70°C for the peak position and the peak width of the crystal peaks also showed the similar interesting non-linear transformation behavior. The peak width (Å-1) of Peak 1 reduced from 0.068 Å-1 (t=30°C) to 0.056 Å-1 (t=170°C). The peak 2 and peak 3 only exist below 70°C. The peak width of peak 2 increased rapidly from 0.58 Å-1 to 0.72 Å-1 but the peak width of

peak 3 decreased slowly from 0.78 Å-1 to 0.75Å-1. The peak 4 appeared when temperature was above 70°C, and its peak width decreased rapidly from 0.12 Å⁻¹ to 0.05 Å⁻¹.

Nylon 11 was a typical hydrogen-bonded polymer. Hydrogen bond is the very important function during the crystal transition. When the α form was heated, the C=O and N-H units on the molecular chains would move intensely and the α form unit cell was broken up. At high temperature, the metastable pseudohexagonal δ form was produced by hydrogen bonds.



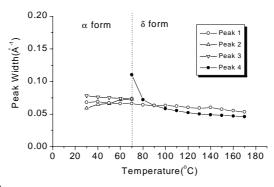


Figure 1 The peak position of crystal peaks

Acknowledgment

This work was supported by the National Natural Science Foundation of China.

References

Y. Takase, J. W. Lee, J. I. Scheinbeim, B. A. Newman, *Macromolecules* **1991**, *24*, 6644.
J. I. Scheinbeim, J. W. Lee, B. A. Newman, *Macromolecules* **1992**, *25*, 3729.

Received 9 October 1999 Revised 14 January 2000

366